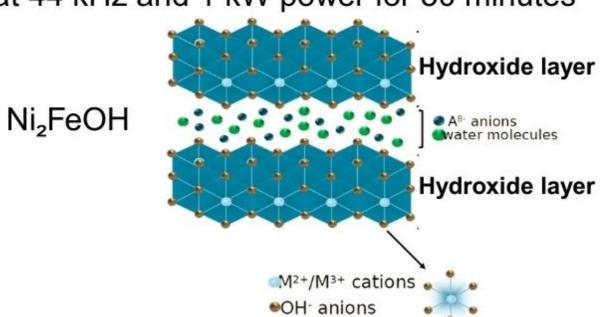
Eosin Y Interaction with Ni-Fe LDH nanoparticles

E. Bereznyak¹, E. Dukhopelnikov¹, A. Laguta², N. Gladkovskaya¹, C. Neves³

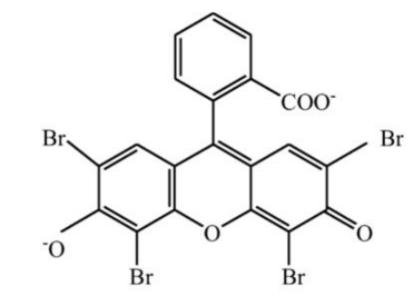
Research Aim

To investigate the interaction between Ni₂FeOH layered double hydroxide (Ni-Fe LDH) and the dye eosin Y (Eos) in aqueous suspensions

Objectives

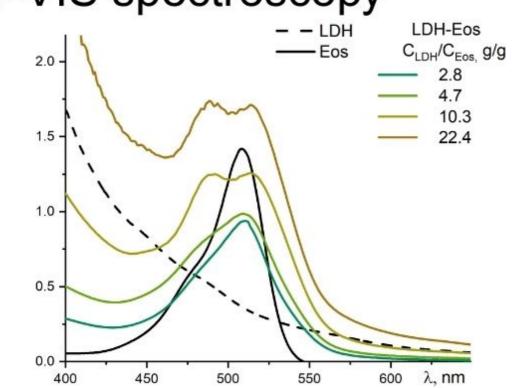

- To elucidate the type of Eos interaction with Ni-Fe LDH
- To calculate the Eos loading parameters to Ni-Fe LDH
- To determine the influence of Eos on the hydrodynamic properties of Ni-Fe LDH nanoparticles

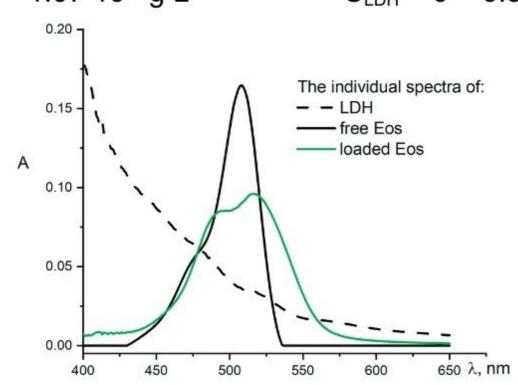
Experimental Techniques


Dynamic and electrophoretic light scattering UV-VIS spectroscopy X-ray diffraction

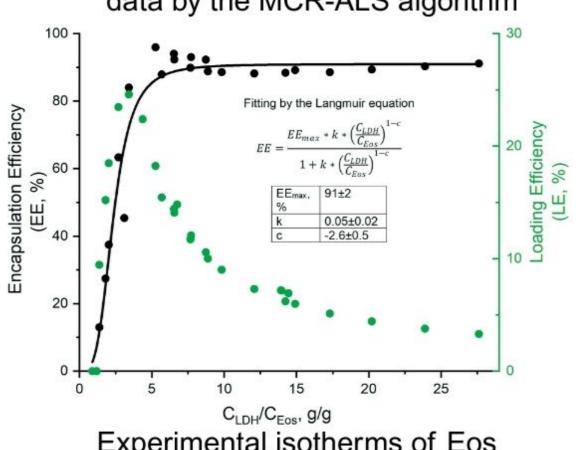
Reagents

Ni-Fe LDH samples were synthesized via coprecipitation under a nitrogen atmosphere. Aqueous suspensions of Ni-Fe LDH were prepared by ultrasonic treatment at 44 kHz and 1 kW power for 30 minutes

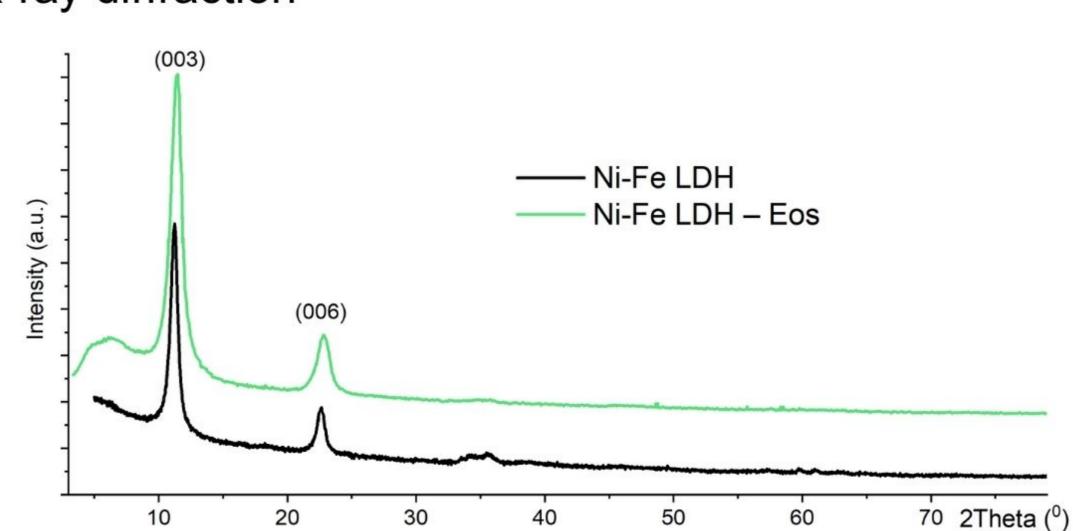

Eosin Y (Eos), Reachim 2,4,5,7- tetrabromofluorescein disodium salt, pK₂ = 3.8


Eosin Y double-charged form

Results


UV-VIS spectroscopy

The titration experiment in Ni-Fe LDH - Eos system $C_{Eos} = 1.07 \cdot 10^{-2} \text{ g L}^{-1}$ $C_{LDH} = 0 \div 0.33 \text{ g L}^{-1}$



The decomposition of the Ni-Fe LDH - Eos titration data by the MCR-ALS algorithm

Experimental isotherms of Eos loading on Ni-Fe LDH nanoparticles

X-ray diffraction

XRD patterns of Ni-Fe LDH and the dried precipitate from the Ni-Fe LDH - Eos suspension with C_{Eos}/C_{LDH} = 25 g/g. Positions of the most intensive reflections of Ni-Fe LDH are marked (indexed in an hexagonal lattice)

Dynamic and electrophoretic light scattering

Colloidal stability Colloidal instability Colloidal stability

Dependence of Ni-Fe LDH zeta potential (ζ) on relative Eos concentration ($C_{LDH} = 0.02 \text{ g L}^{-1}$)

Size distribution (d) of Ni-Fe LDH nanoparticles with adsorbed Eos:

by intensity (1), by volume (2), and by particle number (3)

Conclusions

- Eosin Y loads on Ni₂FeOH nanoparticles predominantly through surface adsorption.
- Due to the high positive surface charge (zeta potential is about 50 mV), Ni_2FeOH LDH exhibits strong sorption capacity toward eosin Y, as indicated by high encapsulation efficiency ($EE_{max} = 91\%$) and loading efficiency ($EE_{max} = 25\%$).
- Eosin Y adsorption on Ni₂FeOH reduces the nanoparticles' zeta potential and the colloidal stability of the suspensions. At high eosin Y concentrations, surface charge reversal (down to –45 mV) occurs, restoring colloidal stability.

NAPLES, ITALY | 23-27 JUNE

DSL2025 NAPLES

21st International Conference on Diffusion in Solids and Liquids

 O.Ya.Usikov Institute for Radiophysics and Electronics NASU, Kharkiv, 61085,Ukraine
 V.N.Karazin National University of Kharkiv, Kharkiv, 61022, Ukraine

³ CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

DSL138